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Abstract

In this work a direct integration method is proposed to estimate temperature-dependent thermal conductivity in a

one-dimensional heat conduction domain without internal measurements. By approximating the spatial temperature

distribution in the domain as a third-order polynomial of position and by integrating the heat conduction equation over

the spatial and temporal domain, the present method estimates the thermal conductivity directly. Also, this method

does not require any prior information on the functional form of the thermal conductivity. Some illustrative examples

are examined to verify the proposed approach. The proposed approach may also be useful to make sufficiently accurate

initial guesses for sophisticated algorithms usually based on iterative refinement scheme.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The estimation of the thermal conductivity from a set

of measured temperature data, which is a kind of inverse

heat conduction problem (IHCP), is considered in this

study. In most practical applications, the thermal con-

ductivity is a function of temperature and as a result the

heat conduction equation becomes non-linear. Many

methods have been proposed to estimate the tempera-

ture-dependent thermal conductivity [1–7]. Most of

them have stressed on the development of optimization

formulations to find a thermal conductivity minimizing

the difference between measured and calculated tem-

peratures at pre-specified spatial and temporal points.

These usually require iterative procedures [1–4]. Also,

some of them are based on the measurements interior to

the domain of interest [2,4]. In some cases, such internal

measurements may be undesirable. Using the Kirchhoff

transformation that can linearize the heat conduction

equation with temperature-dependent thermal conduc-

tivity, Lesnic et al. [5] and Kim [6] proposed non-itera-

tive solutions to IHCPs.

This study presents a direct approach to the estima-

tion of temperature-dependent thermal conductivity in a

one-dimensional time-dependent domain using temporal

measurements only at both ends. The present approach

basically adopts the integral approach, which was al-

ready used by Huang and €OOzis�ik [2] and Kim et al. [7,8].

It should be noted that the present approach has a un-

ique feature against the previous ones. In the previous

procedures for the inverse estimation of the thermal

conductivity, the functional form of the thermal con-

ductivity was assumed. On the contrary, this approach

does not require any assumptions on the functional form

of the thermal conductivity.

This study considers a one-dimensional non-linear

heat conduction domain with heated and insulated ends.

If the temperature distribution in the domain can be

approximated as a third-order polynomial and its four

time-dependent coefficients can be determined from

the imposed heat fluxes and the measured boundary
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temperatures, we will show that the temperature-

dependent thermal conductivity can be estimated directly.

The proposed approach may also be useful to make

sufficiently accurate initial guesses for more sophisti-

cated inverse solution methods mostly based on the it-

erative schemes.

2. Mathematical model

In a one-dimensional homogeneous heat conduction

medium as shown in Fig. 1, let us consider a problem to

determine the temperature-dependent thermal conduc-

tivity, kðT Þ. It is assumed that the domain is bounded on

the left end by a heated wall and on the right by an

insulated wall. The heat flux into the left wall is set to a

constant, qL. For the case of constant heat capacity per

unit volume C, the heat conduction is governed by

C
oT
ot

¼ o

ox
kðT Þ oT

ox

� �
; x 2 ½0; l�; t 2 ð0;1Þ ð1Þ

which is subject to the initial and boundary conditions

T ðt ¼ 0; xÞ ¼ Ti ¼ 0; ð2Þ

qðt; x ¼ 0Þ ¼ � k
oT
ox

����
x¼0

¼ qL and

qðt; x ¼ lÞ ¼ � k
oT
ox

����
x¼l

¼ 0: ð3Þ

For the simplicity, the initial temperature distribution is

assumed to be uniform, Ti. Introducing the following

variables

n ¼ x
l
; s ¼ tk0

Cl2
; j ¼ k

k0
;

h ¼ T � Ti
DTref

and Q ¼ ql
k0 DTref

; ð4Þ

the governing equation and the initial and boundary

conditions will be

oh
os

¼ o

on
jðhÞ oh

on

� �
; n 2 ½0; 1�; s 2 ð0;1Þ ð5Þ

and

hðs ¼ 0; nÞ ¼ 0 ð6Þ

Qðs; n ¼ 0Þ ¼ � j
oh
on

����
n¼0

¼ QL and

Qðs; n ¼ 1Þ ¼ � j
oh
on

����
n¼1

¼ 0: ð7Þ

In this, k0 and DTref are the reference thermal conduc-

tivity and the reference temperature difference, respec-

tively. In addition to the above two boundary data (Eq.

(7)) it is assumed that two boundary temperatures are

available. In practical situations, two boundary heat flux

conditions can be imposed and at the same time two

boundary temperatures can be measured. The tempera-

tures measured at the ends will be time dependent:

hðs; n ¼ 0Þ ¼ hLðtÞ and hðs; n ¼ 1Þ ¼ hRðtÞ: ð8Þ

We are now attempting to determine the temperature-

dependent thermal-conductivity non-iteratively only

with four boundary data (Eqs. (7) and (8)). For this

purpose, we apply the direct integration approach to the

present inverse analysis. Integrating Eq. (5) over the

spatial domain ½0; 1� and over the time interval ½0; s�, we
obtain

Z 1

0

hdn ¼ QLs: ð9Þ

Nomenclature

ai coefficient of model function in Eq. (10):

i ¼ 0, 1, 2, 3

C heat capacity per unit volume

k thermal conductivity

k0 reference thermal conductivity

l slab length

Q dimensionless heat flux (¼ ql=k0 DTref )
q heat flux

T temperature

Ti initial temperature

t time

x coordinate

Greek symbols

DTref reference temperature difference

h relative temperature (¼ ðT � TiÞ=DTref )
j dimensionless thermal conductivity (¼ k=k0)
n dimensionless coordinate (¼ x=l)
r standard deviation

s dimensionless coordinate (¼ tk0=Cl2)

Subscripts

L left wall

R right wall

Fig. 1. Description of problem domain.
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The above relation simply represents the relation be-

tween the amounts of heat added and the increase in the

energy. If the spatial distribution of the temperature is

expressed in terms of thermal conductivity as well as

other known quantities, QL, hL and hR, we can obtain a

relation to estimate the thermal conductivity from

the above energy conservation equation. Considering

the initial and boundary conditions (Eqs. (6) and (7)) the

temperature distribution could be a monotonic function.

In this work where since two temperatures and two heat

fluxes are available at the both ends, we simply ap-

proximate the temperature distribution as a third-order

polynomial with time-dependent coefficients [7,8]:

hðs; nÞ ¼ a0ðsÞ þ a1ðsÞn þ a2ðsÞn2 þ a3ðsÞn3: ð10Þ

The coefficients can be written as

a0 ¼ hL; a1 ¼ �QL

jL

;

a2 ¼
2QL � 3jLðhL � hRÞ

jL

and

a3 ¼ �QL � 2jLðhL � hRÞ
jL

: ð11Þ

Of course, jL is the non-dimensional thermal conduc-

tivity at the temperature of the left end, that is

jL ¼ jðhLÞ. Substituting Eqs. (10) and (11) into Eq. (9),

we obtain an expression to determine the temperature-

dependent thermal conductivity:

jL ¼ QL

6ðhL þ hRÞ � 12QLs
: ð12Þ

The above simple expression allows us to directly esti-

mate the thermal conductivity at T ¼ TL only with the

imposed and the measured data at both ends. Also, no

assumption on the functional form of the thermal con-

ductivity is made to derive the expression.

3. Evaluation of temperature approximation

Since the proposed method should be highly depen-

dent on the approximated temperature profile, it would

be worthwhile to appreciate the present temperature

approximation of a third-order polynomial. Other tem-

perature distribution functions satisfying four boundary

data mentioned above could be possible. However, the

basic idea of the present method will not be degraded

whatever temperature profiles are introduced. A third-

order polynomial could be one of simplest approximates

to the temperature distribution and we adopt it.

For the evaluation of the temperature approxima-

tion, five examples are introduced. Examples 1 and 2 are

related to the thermal conductivity linearly increasing

and decreasing, respectively. Examples 3 and 4 deal with

quadratic variations and in Example 5 a rather oscilla-

tory functional form of thermal conductivity is consid-

ered.

Example 1: jðhÞ ¼ 0:15þ h=300.
Example 2: jðhÞ ¼ 0:50� h=300.
Example 3: jðhÞ ¼ 0:10þ ðh � 40Þ2=8000.
Example 4: jðhÞ ¼ 0:60� ðh � 60Þ2=10000.
Example 5: jðhÞ ¼ 0:50þ ðh=320Þ sinðh=10Þ.

The temperature range of interest is set to from 0 to

about 100 �C and the initial temperature and the refer-

ence temperature difference are assumed to 0 and 1 �C,
respectively. Although some of the examples seem to be

rather severe, they would be illustrative in the evaluation

of the approximation. A constant heat flux of QL ¼ 5 is

imposed on the left wall at s ¼ 0 and heating is contin-

ued until s ¼ 20 while the right wall is insulated. If

k0 ¼ 100 W/m �C and C ¼ 4000 kJ/m3 �C which are

typical for metals, for a specimen of 5 cm thick the heat

flux corresponds to q ¼ 10 kW/m2 and the total mea-

suring time will be 2000 s.

The approximated temperature profiles are compared

with the exact ones in terms of the relative error defined

as

Relative error ¼
R 1

0
jhexactðs; nÞ � happroximatedðs; nÞjdnR 1

0
hexactðs; nÞdn

:

ð13Þ

The exact solutions of the direct heat conduction equa-

tion with the above non-linear thermal conductivities are

obtained numerically with the finite element method [9].

Relative error for each example is given in Fig. 2 and for

the reference the case of a constant thermal conductivity

Fig. 2. Relative errors of approximated temperature distribu-

tion.
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(j ¼ 1:0) is also shown in the figure. In case of a con-

stant thermal conductivity, the agreement between the

approximated and the exact profiles are extremely good

except for very small s. During very earlier period when

heat imposed from the left wall could not be transferred

to the right wall sufficiently, the right wall temperature

Fig. 3. Temperature profiles for QL ¼ 5.
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would remain at the initial temperature and the ap-

proximation would be poor. However, relative errors

shown in Fig. 2 indicate that for sJ 1 the relative error

decreases to several percents. As can be seen in Fig. 3,

excepting the region of very small s, the third-order

polynomial seems to be a reasonable approximation to

the spatial temperature distribution. It should be noted

that according to Eq. (12), the error would not be ac-

cumulated so that the estimation of the thermal con-

ductivity at the future time step will not be affected by

the previous errors.

4. Estimation of thermal conductivity

Now, with the above examples, we will estimate the

temperature dependent thermal conductivity. Again, the

heat flux is set to QL ¼ 5 and the temperature measuring

time is s ¼ 20 with a measurement time step Ds ¼ 1:0 (i.e.
20 measurements). Then, the temperature range will be

from 0 to about 100 �C when Ti ¼ 0 �C and DTref ¼ 1 �C.
In order to verify the effectiveness of the proposed

method in real situations, where measurements are

usually contaminated by uncontrollable error, the mea-

sured temperatures are obtained by adding the random

errors of measurement to the exact temperatures

hmeasured ¼ hexact þ xrh; ð14Þ

where rh is the standard deviation of measurement er-

rors, and for normally distributed errors with 99%

confidence bounds x lies within the bounds

�2:576 < x < 2:576. For the reference, the exact tem-

perature data used in this estimation are listed in Table

1. The estimated results are given in Figs. 4–8. In case of

the estimation using the measurement data with error,

the error bar denoting the sample standard deviation is

plotted to show the statistical behavior in each figure.

For the statistical analysis, 100 sets of numerical ex-

periments are conducted. In the numerical experiments,

we repeat each IHCP three times with three different

error levels: rh ¼ 0:0, 0.1, and 0.2. In this, DTref is set to
1 �C so that the standard deviations correspond to 0.0,

0.1 and 0.2 �C. If measurement error is neglected, as can

be seen Figs. 4–8, we can predict the temperature-de-

pendent thermal conductivity with excellent accuracy.

The estimates with the measurement data contaminated

by random error also show that the proposed approach

can estimate the thermal conductivity quite reasonably.

The results of the statistical analysis suggest that the

standard deviation becomes larger with the increase of

thermal conductivity. In other words, smaller thermal

conductivities result in smaller errors. This observation

is the same as the results of Huang and €OOzis�ik [2] where

the error bounds of the low-diffusivity material were

narrower than those of the high-diffusivity material. In

fact, this can be inferred from statistics. If the thermal

conductivity can be obtained from Eq. (12) and it is a

function of hL and hR only, the standard deviation of the

thermal conductivity rj can be obtained with the stan-

dard deviation of the temperature rh:

Table 1

Exact boundary temperatures

s Example 1 Example 2 Example 3 Example 4 Example 5

hL hR hL hR hL hR hL hR hL hR

1 13.41 1.07 8.45 3.31 11.67 2.17 10.19 2.22 8.25 3.36

2 18.64 5.36 13.59 8.23 18.33 6.47 14.66 7.47 13.15 8.40

3 23.12 10.60 18.72 13.17 25.05 10.84 19.13 12.81 18.04 13.46

4 27.54 15.95 23.87 18.10 31.92 15.13 23.75 18.05 23.00 18.50

5 32.02 21.26 29.03 23.02 38.65 19.37 28.46 23.22 28.07 23.49

6 36.56 26.54 34.20 27.94 44.86 23.58 33.25 28.34 33.30 28.41

7 41.16 31.77 39.38 32.86 50.34 27.85 38.09 33.43 38.69 33.25

8 45.81 36.97 44.59 37.76 55.14 32.28 42.97 38.50 44.19 38.03

9 50.49 42.15 49.81 42.66 59.37 37.00 47.88 43.55 49.61 42.78

10 55.21 47.31 55.05 47.55 63.22 42.12 52.82 48.58 54.65 47.64

11 59.95 52.45 60.33 52.42 66.81 47.67 57.79 53.60 59.25 52.72

12 64.72 57.57 65.63 57.29 70.30 53.57 62.78 58.61 63.62 58.03

13 69.51 62.69 70.97 62.13 73.83 59.59 67.79 63.61 68.01 63.39

14 74.32 67.79 76.36 66.97 77.49 65.54 72.83 68.59 72.56 68.66

15 79.14 72.89 81.80 71.78 81.34 71.34 77.90 73.56 77.31 73.82

16 83.98 77.97 87.31 76.56 85.38 76.98 82.99 78.52 82.24 78.88

17 88.82 83.05 92.91 81.32 89.60 82.48 88.12 83.47 87.37 83.85

18 93.68 88.13 98.62 86.04 93.95 87.87 93.30 88.39 92.78 88.70

19 98.55 93.20 104.48 90.71 98.42 93.18 98.53 93.29 98.70 93.38

20 103.43 98.26 110.54 95.33 102.98 98.43 103.85 98.15 105.69 97.79
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rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ojL

ohL

� �2

r2
hL
þ ojL

ohR

� �2

r2
hR

s

¼ 6
ffiffiffi
2

p
j2
L

QL

rh or
rj

jL

¼ 6
ffiffiffi
2

p
jL

QL

rh; ð15Þ

where it is assumed that hL and hR are uncorrelated and

their standard deviations are same. The statistical be-

havior of the thermal conductivity of Eq. (15) obviously

indicates the dependency of rj on the magnitude of the

thermal conductivity. The equation also says that the

increase of heat flux imposed on the right wall will de-

crease the error bound of the estimated thermal con-

ductivity. As the applied heat flux increases, however,

the time taken to reach the prescribed tempera-

ture bound, for instance we are now considering the

temperature range from 0 to 100 �C, will shorten and

small-s range generating poor approximation of the

temperature profile will broaden. The plot of the tem-

perature differences hL � hR in Fig. 9 drops a hint that

Fig. 4. Estimated thermal conductivity for QL ¼ 5 (Example 1).

Fig. 5. Estimated thermal conductivity for QL ¼ 5 (Example 2).
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bigger temperature difference tends to cause more error

in the temperature approximation (compare Figs. 2 and

9a). According to our experience, it is recommended that

the temperature difference should be kept less than

about 20 �C when DTref ¼ 1 �C and it appears not to be

too restrictive condition in practical situation. If we in-

crease the heat flux to QL ¼ 10, the standard deviations

of the estimated thermal conductivities will be halved

even though for some cases committing small-s or large-
(hL � hR) criterion the estimation will be poor. We re-

peat the estimations of the thermal conductivity with the

increased heat flux of QL ¼ 10 and the measuring time is

set to 10 in order that the temperature range of interest

remains from 0 to 100 �C. The variations of hL � hR are

given in Fig. 9b and the estimated thermal conductivities

based on the measured temperatures with a standard

deviation of rh ¼ 0:2 are shown in Fig. 10. For the sta-

tistical analysis, 100 sets of measurements are conducted.

As deduced from the statistical analysis in Eq. (15), the

standard deviations for the estimates are halved. As ex-

pected, the quality of the estimations is degraded where

the temperature differences go over hL � hR ¼ 20 or the

Fig. 6. Estimated thermal conductivity for QL ¼ 5 (Example 3).

Fig. 7. Estimated thermal conductivity for QL ¼ 5 (Example 4).
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elapsed time is sK 1 (see Fig. 10c). However, it is

worthwhile to note that the estimate of the thermal

conductivity based on the measured temperatures at a

certain time is independent of errors engaged in the

previous measurements. Namely, in the region of

hL � hR K 20 and sJ 1, the quality of the estimates

would be restored. The time interval between consecutive

measurements does not affect the accuracy of the esti-

mates. The proposed algorithm can also be used to

generate the initial guesses for more elaborated inverse

algorithms usually resorting to iterative methods.

5. Conclusions

The present study proposes a direct approach to es-

timate the temperature-dependent thermal conductivity

in a one-dimensional non-linear heat conduction me-

dium. Although the approach is based on the conven-

tional integral approach, it has some peculiar features

that it does not require any assumption on the func-

tional form of the thermal conductivity, any iterative

procedures, and any interior temperature sensors. By

approximating the temperature distribution in a one-

Fig. 8. Estimated thermal conductivity for QL ¼ 5 (Example 5).

Fig. 9. Temperature differences.
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dimensional domain with the heated and the insulated

walls as a third-order polynomial, we can derive a simple

relation between the thermal conductivity at the heated

wall temperature and the known variables like end

temperatures, heat flux and time. Several artificial ther-

mal conductivity functions expressed in terms of tem-

perature are successfully estimated with the proposed

method. Some restrictions in the application of the

Fig. 10. Estimated thermal conductivity for QL ¼ 10.
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proposed algorithm and statistical issues are discussed.

Also, the estimates with the present method would be

good initial guesses for more sophisticated IHCP algo-

rithms.
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